论文标题
sIndiffusion:从单个自然图像中学习扩散模型
SinDiffusion: Learning a Diffusion Model from a Single Natural Image
论文作者
论文摘要
我们提出了sindiffusion,利用deno的扩散模型从单个自然图像中捕获斑块的内部分布。与现有的基于GAN的方法相比,Sindiffusion显着提高了生成样品的质量和多样性。它基于两个核心设计。首先,对Sindiffusion进行了单个模型的培训,而不是多个模型,这些模型具有逐渐增长的量表,这是先前工作的默认设置。这避免了错误的积累,这会导致生成的结果中的特征性伪像。其次,我们确定扩散网络的贴片级接受场对于捕获图像的斑块统计量至关重要且有效,因此我们重新设计了扩散模型的网络结构。结合这两种设计使我们能够从单个图像中产生逼真的和多样的图像。此外,由于扩散模型的固有能力,可以将其应用于各种应用,即文本引导的图像生成和图像支出。对广泛图像的广泛实验证明了我们提出的对斑块分布建模的方法的优越性。
We present SinDiffusion, leveraging denoising diffusion models to capture internal distribution of patches from a single natural image. SinDiffusion significantly improves the quality and diversity of generated samples compared with existing GAN-based approaches. It is based on two core designs. First, SinDiffusion is trained with a single model at a single scale instead of multiple models with progressive growing of scales which serves as the default setting in prior work. This avoids the accumulation of errors, which cause characteristic artifacts in generated results. Second, we identify that a patch-level receptive field of the diffusion network is crucial and effective for capturing the image's patch statistics, therefore we redesign the network structure of the diffusion model. Coupling these two designs enables us to generate photorealistic and diverse images from a single image. Furthermore, SinDiffusion can be applied to various applications, i.e., text-guided image generation, and image outpainting, due to the inherent capability of diffusion models. Extensive experiments on a wide range of images demonstrate the superiority of our proposed method for modeling the patch distribution.