论文标题
通过修剪和生长的稀疏概率电路
Sparse Probabilistic Circuits via Pruning and Growing
论文作者
论文摘要
概率电路(PC)是概率分布的可寓言表示,允许对似然和边缘的精确计算进行精确计算。在改善PC的规模和表现力方面,最近取得了重大进展。但是,随着模型尺寸的增加,PC训练性能高原。我们发现,现有大型PC结构中的大多数容量都浪费了:完全连接的参数层仅稀少。我们提出了两项操作:修剪和生长,利用PC结构的稀疏性。具体而言,修剪操作可除去PC的不重要子网络以进行模型压缩,并具有理论保证。增长的操作通过增加潜在空间的大小来增加模型容量。通过交替应用修剪和增长,我们增加了有意义地使用的能力,从而使我们能够显着扩展PC学习。从经验上讲,与其他PC学习器相比,我们的学习者在MNIST家族图像数据集和Penn Tree Bank语言数据上实现了最新的可能性,以及与其他PC学习器相比,基于流动的模型和诸如差异性自动编码器(VAES)的易于处理的深层生成模型。
Probabilistic circuits (PCs) are a tractable representation of probability distributions allowing for exact and efficient computation of likelihoods and marginals. There has been significant recent progress on improving the scale and expressiveness of PCs. However, PC training performance plateaus as model size increases. We discover that most capacity in existing large PC structures is wasted: fully-connected parameter layers are only sparsely used. We propose two operations: pruning and growing, that exploit the sparsity of PC structures. Specifically, the pruning operation removes unimportant sub-networks of the PC for model compression and comes with theoretical guarantees. The growing operation increases model capacity by increasing the size of the latent space. By alternatingly applying pruning and growing, we increase the capacity that is meaningfully used, allowing us to significantly scale up PC learning. Empirically, our learner achieves state-of-the-art likelihoods on MNIST-family image datasets and on Penn Tree Bank language data compared to other PC learners and less tractable deep generative models such as flow-based models and variational autoencoders (VAEs).