论文标题
速率引起的异质反应扩散系统中的小费:不变的歧管框架和地理上转移的生态系统
Rate-Induced Tipping in Heterogeneous Reaction-Diffusion Systems: An Invariant Manifold Framework and Geographically Shifting Ecosystems
论文作者
论文摘要
我们提出了一个框架,以在一个空间维度中研究反应扩散方程(RDES)中的倾斜点,其中反应项在空间中衰减(渐近均匀),并且由于外部输入而随时间(非自治)的线性变化。沿着稳定且不稳定的不变歧管的交汇处构建杂斜轨道的移动框架坐标的紧凑型坐标,使我们能够(i)通过计算杂型轨道型在负面和阳性方程式中连接额外的脉冲(i)在计算杂型轨道上连接的危险等方程的脉冲(i),并获得多个危险范围的危险等方程(这种杂斜轨道的分叉和(iii)通过这种分叉的数值延续获得倾斜图。我们将框架应用于栖息地斑块的说明性模型,该模型具有对人口增长的影响,并且由于人类活动或气候变化而在地理上缩小或转移。因此,我们确定两类的临界点灭绝:当缩小的栖息地低于某些临界长度和速率引起的小费(R-Tipping)时,分叉引起的小费(B尖)当移动栖息地超过一定的临界速度时。我们探索了两参数R-tipping图,以了解临界速度如何取决于栖息地斑块的大小和人口的分散率,发现了转移人口存活的参数区域,并将这些区域与无限同质栖息地中的侵入速度联系起来。此外,我们将小费的不稳定性与逐渐过渡的临时过渡形成了鲜明的对比,从而灭绝了,而遗产的人口增长而没有伴侣的效果。
We propose a framework to study tipping points in reaction-diffusion equations (RDEs) in one spatial dimension, where the reaction term decays in space (asymptotically homogeneous) and varies linearly with time (nonautonomous) due to an external input. A compactification of the moving-frame coordinate together with Lin's method to construct heteroclinic orbits along intersections of stable and unstable invariant manifolds allows us to (i) obtain multiple coexisting pulse and front solutions for the RDE by computing heteroclinic orbits connecting equilibria at negative and positive infinity in the compactified moving-frame ordinary differential equation, (ii) detect tipping points as dangerous bifurcations of such heteroclinic orbits, and (iii) obtain tipping diagrams by numerical continuation of such bifurcations. We apply our framework to an illustrative model of a habitat patch that features an Allee effect in population growth and is geographically shrinking or shifting due to human activity or climate change. Thus, we identify two classes of tipping points to extinction: bifurcation-induced tipping (B-tipping) when the shrinking habitat falls below some critical length and rate-induced tipping (R-tipping) when the shifting habitat exceeds some critical speed. We explore two-parameter R-tipping diagrams to understand how the critical speed depends on the size of the habitat patch and the dispersal rate of the population, uncover parameter regions where the shifting population survives, and relate these regions to the invasion speed in an infinite homogeneous habitat. Furthermore, we contrast the tipping instabilities with gradual transitions to extinction found for logistic population growth without the Allee effect.