论文标题

基于石墨烯的填充剂增强的聚丙烯纳米复合材料的热和机械性能的介观建模和实验验证

Mesoscopic modeling and experimental validation of thermal and mechanical properties of polypropylene nanocomposites reinforced by graphene-based fillers

论文作者

Muhammad, Atta, Srivastava, Rajat, Koutroumanis, Nikos, Semitekolos, Dionisis, Chiavazzo, Eliodoro, Pappas, Panagiotis-Nektarios, Galiotis, Costas, Asinari, Pietro, Charitidis, Costas A., Fasano, Matteo

论文摘要

纳米复合材料的开发依赖于结构 - 特性关系,这需要多尺度建模方法。这项研究提出了一个建模框架,该框架利用介观模型从其分子结构开始预测纳米复合材料的热和机械性能。详细介绍,考虑了聚丙烯(PP)和基于石墨烯的纳米液(Graphene(GR),氧化石墨烯(GO)和氧化石墨烯(RGO))的介观模型。 PP/GR纳米复合材料的新开发的介观模型提供了有关填充矩阵接口处的热和机械性能的机械信息,然后可以利用该界面来通过校准传统连续体模拟的预测准确性,通过校准填充填充填充剂 - 玛特里克斯界面的热和机械性能。一旦通过专门的实验活动进行了验证,该多尺度模型表明,纳米填料的添加适度(最高2 wt。%),年轻的模量和热导率分别显示出高达35%和25%的增强,而Poisson的比率略有下降。在测试的不同组合中,PP/GR纳米复合材料显示出最佳的机械性能,而PP/RGO显示出最佳的热导率。该经过验证的介质模型可以有助于基于聚丙烯的机械和热性能增强的智能材料的开发,尤其是用于机械,能量存储和传感应用。

The development of nanocomposites relies on structure-property relations, which necessitate multiscale modeling approaches. This study presents a modelling framework that exploits mesoscopic models to predict the thermal and mechanical properties of nanocomposites starting from their molecular structure. In detail, mesoscopic models of polypropylene (PP) and graphene based nanofillers (Graphene (Gr), Graphene Oxide (GO), and reduced Graphene Oxide (rGO)) are considered. The newly developed mesoscopic model for the PP/Gr nanocomposite provides mechanistic information on the thermal and mechanical properties at the filler-matrix interface, which can be then exploited to enhance the prediction accuracy of traditional continuum simulations by calibrating the thermal and mechanical properties of the filler-matrix interface. Once validated through a dedicated experimental campaign, this multiscale model demonstrates that with the modest addition of nanofillers (up to 2 wt.%), the Young's modulus and thermal conductivity show up to 35% and 25% enhancement, respectively, while the Poisson's ratio slightly decreases. Among the different combinations tested, PP/Gr nanocomposite shows the best mechanical properties, whereas PP/rGO demonstrates the best thermal conductivity. This validated mesoscopic model can contribute to the development of smart materials with enhanced mechanical and thermal properties based on polypropylene, especially for mechanical, energy storage, and sensing applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源