论文标题
麦克斯韦的方程式被重新审视 - 心理图像和数学符号
Maxwell's equations revisited -- mental imagery and mathematical symbols
论文作者
论文摘要
利用麦克斯韦的心理图像,对假想流体的流体运动管的心理图像,我们得出了他的方程式$ \ permatorName {curl} \ Mathbf {e} = - \ frac {\ frac {\ partial \ Mathbf {b}}} \ frac {\ partial \ mathbf {d}} {\ partial t} + \ mathbf {j} $,$ \ operatotorname {div} \ Mathbf {d} = \ varrho $,$ \ varrho $,$ \ operatornAme {div} $ \ mathbf {d} = \ varepsilon_0 \ mathbf {e} $,$ \ mathbf {b} =μ_0\ mathbf {h} $,形成我们所谓的今天的麦克斯韦方程。主要工具是差异,卷曲和梯度整合定理,以及在矢量微积分符号中提出的Poincare的引理版本。关于电动力理论的发展历史,引文和对原始文献和二级文献的参考的评论。
Using Maxwell's mental imagery of a tube of fluid motion of an imaginary fluid, we derive his equations $\operatorname{curl} \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$, $\operatorname{curl} \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{j}$, $\operatorname{div} \mathbf{D} = \varrho$, $\operatorname{div} \mathbf{B} = 0$, which together with the constituting relations $\mathbf{D} = \varepsilon_0 \mathbf{E}$, $\mathbf{B} = μ_0 \mathbf{H}$, form what we call today Maxwell's equations. Main tools are the divergence, curl and gradient integration theorems and a version of Poincare's lemma formulated in vector calculus notation. Remarks on the history of the development of electrodynamic theory, quotations and references to original and secondary literature complement the paper.