论文标题

麦克斯韦的方程式被重新审视 - 心理图像和数学符号

Maxwell's equations revisited -- mental imagery and mathematical symbols

论文作者

Geyer, Matthias, Hausmann, Jan, Kitzing, Konrad, Senkyr, Madlyn, Siegmund, Stefan

论文摘要

利用麦克斯韦的心理图像,对假想流体的流体运动管的心理图像,我们得出了他的方程式$ \ permatorName {curl} \ Mathbf {e} = - \ frac {\ frac {\ partial \ Mathbf {b}}} \ frac {\ partial \ mathbf {d}} {\ partial t} + \ mathbf {j} $,$ \ operatotorname {div} \ Mathbf {d} = \ varrho $,$ \ varrho $,$ \ operatornAme {div} $ \ mathbf {d} = \ varepsilon_0 \ mathbf {e} $,$ \ mathbf {b} =μ_0\ mathbf {h} $,形成我们所谓的今天的麦克斯韦方程。主要工具是差异,卷曲和梯度整合定理,以及在矢量微积分符号中提出的Poincare的引理版本。关于电动力理论的发展历史,引文和对原始文献和二级文献的参考的评论。

Using Maxwell's mental imagery of a tube of fluid motion of an imaginary fluid, we derive his equations $\operatorname{curl} \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$, $\operatorname{curl} \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{j}$, $\operatorname{div} \mathbf{D} = \varrho$, $\operatorname{div} \mathbf{B} = 0$, which together with the constituting relations $\mathbf{D} = \varepsilon_0 \mathbf{E}$, $\mathbf{B} = μ_0 \mathbf{H}$, form what we call today Maxwell's equations. Main tools are the divergence, curl and gradient integration theorems and a version of Poincare's lemma formulated in vector calculus notation. Remarks on the history of the development of electrodynamic theory, quotations and references to original and secondary literature complement the paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源