论文标题
通过实例模式作曲家的可推广的隐式神经表示
Generalizable Implicit Neural Representations via Instance Pattern Composers
论文作者
论文摘要
尽管最近的隐式神经表示(INRS)进展,但对于INR的基于坐标的多层感知器(MLP)仍然具有挑战性,以在跨数据实例中学习共同表示并将其推广到看不见的实例。在这项工作中,我们为可推广的INR引入了一个简单而有效的框架,该框架使基于坐标的MLP通过仅在早期MLP层中的一小部分权重作为实例模式COMPOSER来表示复杂的数据实例;其余的MLP权重学习了整个实例中常见表示形式的模式组成规则。我们可推广的INR框架与现有的元学习和超网络完全兼容,以预测看不见的实例的调制重量。广泛的实验表明,我们的方法在诸如音频,图像和3D对象之类的广泛域上实现了高性能,而消融研究验证了我们的体重调制。
Despite recent advances in implicit neural representations (INRs), it remains challenging for a coordinate-based multi-layer perceptron (MLP) of INRs to learn a common representation across data instances and generalize it for unseen instances. In this work, we introduce a simple yet effective framework for generalizable INRs that enables a coordinate-based MLP to represent complex data instances by modulating only a small set of weights in an early MLP layer as an instance pattern composer; the remaining MLP weights learn pattern composition rules for common representations across instances. Our generalizable INR framework is fully compatible with existing meta-learning and hypernetworks in learning to predict the modulated weight for unseen instances. Extensive experiments demonstrate that our method achieves high performance on a wide range of domains such as an audio, image, and 3D object, while the ablation study validates our weight modulation.