论文标题
从模棱两可的卷到模棱两可的时期
From equivariant volumes to equivariant periods
论文作者
论文摘要
我们考虑分别以$ s^1 $,$ d^2 $和$ d^2 \ times s^1 $的分区函数获得的Abelian Git商的概括。我们定义这些对象,并研究它们对非紧凑型感谢您的Kähler商的依赖性参数。我们概括了这些分区函数遵守的有限差方程(移位方程)。分区函数被差异/差异操作员歼灭,这些差异/差异操作员代表目标的量子量子同谋/K理论关系,而这些关系中紧凑型除数的出现在分析非等级限制的分析中起着至关重要的作用。我们表明,模棱两可的参数的扩展包含有关目标的零gromov-witten属属的信息。
We consider generalizations of equivariant volumes of abelian GIT quotients obtained as partition functions of 1d, 2d, and 3d supersymmetric GLSM on $S^1$, $D^2$ and $D^2 \times S^1$, respectively. We define these objects and study their dependence on equivariant parameters for non-compact toric Kähler quotients. We generalize the finite-difference equations (shift equations) obeyed by equivariant volumes to these partition functions. The partition functions are annihilated by differential/difference operators that represent equivariant quantum cohomology/K-theory relations of the target and the appearance of compact divisors in these relations plays a crucial role in the analysis of the non-equivariant limit. We show that the expansion in equivariant parameters contains information about genus-zero Gromov-Witten invariants of the target.