论文标题
风速和风向通过条件方法的联合建模
Joint modeling of wind speed and wind direction through a conditional approach
论文作者
论文摘要
大气近地面风速和风向在许多应用中起着重要的作用,从空气质量建模,建筑设计,风力涡轮机放置到气候变化研究。因此,至关重要的是准确估计风速和方向的关节概率分布。在这项工作中,我们开发了一种有条件的方法来模拟这两个变量,其中关节分布分解为风向边际分布的乘积以及风速给定风向的条件分布。为了适应风向的圆形性质,使用了von mises混合模型。条件风速分布通过两个阶段估计程序建模为定向依赖性的Weibull分布,由定向BINNED的Weibull参数估计组成,然后进行谐波回归,以估计Weibull参数对风向的依赖性。一项蒙特卡洛模拟研究表明,我们的方法优于一种替代方法,该方法使用定期的样条键回归来估计效率。我们通过使用区域气候模型的输出来研究我们的方法,以研究在未来的气候场景下风速和指导的联合分布如何变化。
Atmospheric near surface wind speed and wind direction play an important role in many applications, ranging from air quality modeling, building design, wind turbine placement to climate change research. It is therefore crucial to accurately estimate the joint probability distribution of wind speed and direction. In this work we develop a conditional approach to model these two variables, where the joint distribution is decomposed into the product of the marginal distribution of wind direction and the conditional distribution of wind speed given wind direction. To accommodate the circular nature of wind direction a von Mises mixture model is used; the conditional wind speed distribution is modeled as a directional dependent Weibull distribution via a two-stage estimation procedure, consisting of a directional binned Weibull parameter estimation, followed by a harmonic regression to estimate the dependence of the Weibull parameters on wind direction. A Monte Carlo simulation study indicates that our method outperforms an alternative method that uses periodic spline quantile regression in terms of estimation efficiency. We illustrate our method by using the output from a regional climate model to investigate how the joint distribution of wind speed and direction may change under some future climate scenarios.