论文标题
旋转非手续中间长波方程的椭圆形孤子溶液
Elliptic soliton solutions of the spin non-chiral intermediate long-wave equation
论文作者
论文摘要
我们构建了具有周期性边界条件的自旋非手续中间长波(SNCILW)方程的椭圆形多螺旋溶液。这些溶液是通过包括动态背景术语的自旋尖端ANSATZ获得的。我们表明,此ANSATZ解决了周期性的SNCILW方程,只要旋转满足椭圆形$ a $ type spin Calogero-Moser(SCM)系统,并且对初始条件有某些约束。该结果的关键是椭圆形SCM系统的Bäcklund转换,其中包括非平凡的动态背景术语。我们还在实际线和自旋benjamin-ono方程式上介绍了SNCILW方程的溶液,该方程通过允许非平凡的背景项来推广以前获得的解决方案。
We construct elliptic multi-soliton solutions of the spin non-chiral intermediate long-wave (sncILW) equation with periodic boundary conditions. These solutions are obtained by a spin-pole ansatz including a dynamical background term; we show that this ansatz solves the periodic sncILW equation provided the spins and poles satisfy the elliptic $A$-type spin Calogero-Moser (sCM) system with certain constraints on the initial conditions. The key to this result is a Bäcklund transformation for the elliptic sCM system which includes a non-trivial dynamical background term. We also present solutions of the sncILW equation on the real line and of the spin Benjamin-Ono equation which generalize previously obtained solutions by allowing for a non-trivial background term.