论文标题
部分可观测时空混沌系统的无模型预测
Enhancing Recommender Systems: A Strategy to Mitigate False Negative Impact
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In implicit collaborative filtering (CF) task of recommender systems, recent works mainly focus on model structure design with promising techniques like graph neural networks (GNNs). Effective and efficient negative sampling methods that suit these models, however, remain underdeveloped. One challenge is that existing hard negative samplers tend to suffer from severer over-fitting in model training. In this work, we first study the reason behind the over-fitting, and illustrate it with the incorrect selection of false negative instances with the support of experiments. In addition, we empirically observe a counter-intuitive phenomenon, that is, polluting hard negative samples' embeddings with a quite large proportional of positive samples' embeddings will lead to remarkable performance gains for prediction accuracy. On top of this finding, we present a novel negative sampling strategy, i.e., positive-dominated negative synthesizing (PDNS). Moreover, we provide theoretical analysis and derive a simple equivalent algorithm of PDNS, where only a soft factor is added in the loss function. Comprehensive experiments on three real-world datasets demonstrate the superiority of our proposed method in terms of both effectiveness and robustness.