论文标题
使用平行自适应退火迈向无限的自我学习MCMC
Toward Unlimited Self-Learning MCMC with Parallel Adaptive Annealing
论文作者
论文摘要
最近,提出了使用机器学习模型来加速马尔可夫链蒙特卡洛(MCMC)方法的自我学习蒙特卡洛(SLMC)方法。使用潜在生成模型,SLMC方法实现了有效的蒙特卡洛更新,而自相关更少。但是,SLMC方法很难直接应用于难以获得训练数据的多模式分布。为了解决限制,我们提出了平行的自适应退火,这使SLMC方法直接适用于具有逐渐训练的建议的多模式分布,同时退火目标分布。并行自适应退火基于(i)顺序学习,并退火以继承和更新模型参数,(ii)自适应退火以自动检测到底层学习,以及(iii)平行退火以减轻建议模型的模式崩溃。我们还提出了VAE-SLMC方法,该方法利用变异自动编码器(VAE)作为SLMC的建议,以使用最近澄清的VAE定量特性,使其与以前的任何状态无关。实验验证了我们的方法可以熟练地从多个多模式玩具分布和实用多模式后分布中获得准确的样品,这是很难通过现有的SLMC方法来实现的。
Self-learning Monte Carlo (SLMC) methods are recently proposed to accelerate Markov chain Monte Carlo (MCMC) methods using a machine learning model. With latent generative models, SLMC methods realize efficient Monte Carlo updates with less autocorrelation. However, SLMC methods are difficult to directly apply to multimodal distributions for which training data are difficult to obtain. To solve the limitation, we propose parallel adaptive annealing, which makes SLMC methods directly apply to multimodal distributions with a gradually trained proposal while annealing target distribution. Parallel adaptive annealing is based on (i) sequential learning with annealing to inherit and update the model parameters, (ii) adaptive annealing to automatically detect under-learning, and (iii) parallel annealing to mitigate mode collapse of proposal models. We also propose VAE-SLMC method which utilizes a variational autoencoder (VAE) as a proposal of SLMC to make efficient parallel proposals independent of any previous state using recently clarified quantitative properties of VAE. Experiments validate that our method can proficiently obtain accurate samples from multiple multimodal toy distributions and practical multimodal posterior distributions, which is difficult to achieve with the existing SLMC methods.