论文标题

共振$ x(3960)$作为隐藏的魅力量表tetraquark

Resonance $X(3960)$ as a hidden charm-strange scalar tetraquark

论文作者

Agaev, S. S., Azizi, K., Sundu, H.

论文摘要

我们通过计算其频谱参数和宽度来研究隐藏的魅力标量tetrange tetrange tetrane tetrane tetraquark $ c \ overline {c} s \ overline {s} $,我们将获得的结果与resonance $ x(3960)$的质量和宽度进行比较。我们将Tetraquark建模为diquark-antidiquark状态$ x = [cs] [\ overline {c} \ overline {s}] $,带有spin-parinities $ j^{\ mathrm {pc}}} = 0^{++} $。 $ x $的质量和当前耦合是使用QCD两点总和规则来计算的。 Tetraquark $ x $的宽度是通过衰减通道估算的,$ x \ to d_ {s}^{+} d_ {s}^{ - } $和$ x \ toη_{c}}η^η^{(\ prime)} $。这些过程的部分宽度是用耦合$ g $,$ g_1 $和$ g_2 $表示的,它们描述了粒子在顶点$ xd_ {s}^{s}^{+} d_ {s} d_ {s}^{ - }^{ - }^{ - } $,$xη__{ $ g $,$ g_1 $和$ g_2 $的数值通过采用三点总和法来评估。比较结果$ m =(3976 \ pm 85) $ x(3960)$可以被视为标量diquark-antidiquark州的候选人。

We investigate features of the hidden charm-strange scalar tetraquark $c \overline{c}s\overline{s}$ by calculating its spectral parameters and width, and we compare the obtained results with the mass and width of the resonance $ X(3960)$ discovered recently in the LHCb experiment. We model the tetraquark as a diquark-antidiquark state $X=[cs][\overline{c}\overline{s}]$ with spin-parities $J^{\mathrm{PC}}=0^{++}$. The mass and current coupling of $X$ are calculated using the QCD two-point sum rules by taking into account various vacuum condensates up to dimension $10$. The width of the tetraquark $X$ is estimated via the decay channels $X \to D_{s}^{+}D_{s}^{-}$ and $X \to η_{c} η^{(\prime)}$. The partial widths of these processes are expressed in terms of couplings $G$, $g_1$ and $g_2$ which describe the strong interactions of particles at the vertices $XD_{s}^{+}D_{s}^{-}$, $ Xη_{c}η^{\prime}$ and $Xη_{c}η$, respectively. Numerical values of $G$, $g_1$ and $g_2$ are evaluated by employing the three-point sum rule method. Comparing the results $m=(3976 \pm 85)~\mathrm{MeV}$ and $Γ_{ \mathrm{X}}=(42.2 \pm 12.0)~\mathrm{MeV}$ obtained for parameters of the tetraquark $X$ and experimental data of the LHCb Collaboration, we conclude that the resonance $X(3960)$ can be considered as a candidate to a scalar diquark-antidiquark state.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源