论文标题

不变性的随机平滑证书

Invariance-Aware Randomized Smoothing Certificates

论文作者

Schuchardt, Jan, Günnemann, Stephan

论文摘要

符合不同领域固有的不变的构建模型,例如翻译或旋转下的不变性,是将机器学习应用于现实世界问题(例如分子属性预测,医学成像,蛋白质折叠或激光雷达分类)的关键方面。我们第一次研究如何利用模型的不变,以确保其预测的鲁棒性。我们提出了一种灰色框方法,并使用有关不可分割的白盒知识来增强功能强大的黑盒随机平滑技术。首先,我们根据组轨道开发灰色框证书,这些证书可以应用于置换量和欧几里得异构体的任意模型。然后,我们获得了灰色盒子证书非常紧密的。我们在实验上证明,事实证明的严格证书可以提供更强的保证,但是在实际情况下,基于轨道的方法是一个很好的近似值。

Building models that comply with the invariances inherent to different domains, such as invariance under translation or rotation, is a key aspect of applying machine learning to real world problems like molecular property prediction, medical imaging, protein folding or LiDAR classification. For the first time, we study how the invariances of a model can be leveraged to provably guarantee the robustness of its predictions. We propose a gray-box approach, enhancing the powerful black-box randomized smoothing technique with white-box knowledge about invariances. First, we develop gray-box certificates based on group orbits, which can be applied to arbitrary models with invariance under permutation and Euclidean isometries. Then, we derive provably tight gray-box certificates. We experimentally demonstrate that the provably tight certificates can offer much stronger guarantees, but that in practical scenarios the orbit-based method is a good approximation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源