论文标题
基于地理空间簇的混合时空副插插
Geo-Spatial Cluster based Hybrid Spatio-Temporal Copula Interpolation
论文作者
论文摘要
在没有高斯假设的情况下,没有干扰整个空间表面的空间连续性在不同时间滞后的插值是具有挑战性的。过去的研究人员足够注意时空插值,忽略了空间平均功能,阈值距离和保持空间连续性的方向的动态行为。因此,我们采用分层空间聚类(HSC)来保留局部空间平稳性。这项研究工作介绍了一种基于杂种的高价值时空插值算法。空间依赖性是由混合的极值概率分布(BEVD)捕获的。时间依赖性是通过不同时间粒度(1个月,2个月和3个月)的双向长时间短时内存(BLSTM)模拟的。时空依赖性是由Gumbel-Hougaard Copula(GH)建模的。我们将提议的时空插值方法应用于德里的空气污染数据(室外颗粒物(PM)浓度),该数据是从印度中央污染控制委员会网站收集的,作为一项关键的环境研究。本文介绍了一种用于时空插值的概率转发神经网络算法。这种时空杂交副插插算法的表现要优于表现,并且足够有效地检测空间趋势和时间影响。从整个研究中,我们注意到一年中的PM集中度最高,通常在11月和12月。 Del-Hi的北部和中部是空气污染最敏感的。
In the absence of Gaussianity assumptions without disturbing spatial continuity interpolating along the whole spatial surface for different time lags is challenging. The past researchers pay enough attention to Spatio-temporal interpolation ignoring the dynamic behavior of a spatial mean function, threshold distance, and direction of maintaining spatial continuity. Therefore, we employ hierarchical spatial clustering (HSC) to preserve local spatial stationarity. This research work introduces a hybrid extreme valued copula-based Spatio-temporal interpolation algorithm. Spatial dependence is captured by a blended extreme valued probability distribution (BEVD). Temporal dependency is modeled by the Bi-directional long short-time memory (BLSTM) at different temporal granularities, 1 month, 2 months, and 3 months. Spatio-temporal dependence is modeled by the Gumbel-Hougaard copula (GH). We apply the proposed Spatio-temporal interpolation approach to the air pollution data (Outdoor Particulate Matter (PM) concentration) of Delhi, collected from the website of the Central Pollution Control Board, India as a crucial circumstantial study. This article describes a probabilistic-recurrent neural networking algorithm for Spatio-temporal interpolation. This Spatio-temporal hybrid copula interpolation algorithm outperforms and is efficient enough to detect spatial trends and temporal influence. From the entire research, we notice that PM concentration in a year reaches a maximum, generally in November and December. The northern and central part of Del-hi is the most sensitive regarding air pollution.