论文标题
弱重力猜想对黑洞的潮汐爱数字的含义
Implications of the Weak Gravity Conjecture for Tidal Love Numbers of Black Holes
论文作者
论文摘要
弱重力猜想表明,低能量有效场理论中的极端黑洞应该能够衰减。该标准对重力校正的系数产生了非平凡的约束。在本文中,我们研究了由于高阶衍生校正而导致中性黑洞的潮汐变形性。作为概念证明,我们考虑对Riemann曲率张量中的立方顺序进行校正。中性黑洞的潮汐爱数量从高阶派生术语中获得了前阶校正,因为纯粹的一般相对论中的黑洞会消失潮汐爱数。我们得出的结论是,黑洞的潮汐变形性与弱重力猜想之间的相互作用提供了有关有效场理论的有用信息。
The Weak Gravity Conjecture indicates that extremal black holes in the low energy effective field theory should be able to decay. This criterion gives rise to non-trivial constraints on the coefficients of higher-order derivative corrections to gravity. In this paper, we investigate the tidal deformability of neutral black holes due to higher-order derivative corrections. As a proof of concept, we consider a correction of cubic order in the Riemann curvature tensor. The tidal Love numbers of neutral black holes receive leading-order corrections from higher-order derivative terms, since black holes in pure General Relativity have vanishing tidal Love number. We conclude that the interplay between the tidal deformability of black holes and the Weak Gravity Conjecture provides useful information about the effective field theory.