论文标题

从图形神经网络中学习分支启发式方法

Learning Branching Heuristics from Graph Neural Networks

论文作者

Zhang, Congsong, Gao, Yong, Nastos, James

论文摘要

回溯已广泛用于解决人工智能(AI)中的问题,包括约束满意度问题和组合优化问题。良好的分支启发式方法可以通过帮助修剪搜索空间并将搜索方向前进,从而有效地提高回溯性能。在本文中,我们首先提出了一个使用概率方法设计的新图形神经网络(GNN)模型。从GNN模型中,我们引入了一种学习组合优化问题的分支启发式方法的方法。特别是,我们的GNN模型在给定的图中学习了顶点上的适当概率分布,从中提取分支启发式并将其用于回溯搜索。我们对(最小)主导问题问题的实验结果表明,就整个搜索树的分支数量而言,这种学识渊博的分支启发式的性能比最小诱人的启发式启发式性能更好。我们的方法引入了一种应用GNN来增强AI中使用的经典回溯算法的新方法。

Backtracking has been widely used for solving problems in artificial intelligence (AI), including constraint satisfaction problems and combinatorial optimization problems. Good branching heuristics can efficiently improve the performance of backtracking by helping prune the search space and leading the search to the most promising direction. In this paper, we first propose a new graph neural network (GNN) model designed using the probabilistic method. From the GNN model, we introduce an approach to learn a branching heuristic for combinatorial optimization problems. In particular, our GNN model learns appropriate probability distributions on vertices in given graphs from which the branching heuristic is extracted and used in a backtracking search. Our experimental results for the (minimum) dominating-clique problem show that this learned branching heuristic performs better than the minimum-remaining-values heuristic in terms of the number of branches of the whole search tree. Our approach introduces a new way of applying GNNs towards enhancing the classical backtracking algorithm used in AI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源