论文标题
部分可观测时空混沌系统的无模型预测
ESIE-BERT: Enriching Sub-words Information Explicitly with BERT for Joint Intent Classification and SlotFilling
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Natural language understanding (NLU) has two core tasks: intent classification and slot filling. The success of pre-training language models resulted in a significant breakthrough in the two tasks. One of the promising solutions called BERT can jointly optimize the two tasks. We note that BERT-based models convert each complex token into multiple sub-tokens by wordpiece algorithm, which generates a mismatch between the lengths of the tokens and the labels. This leads to BERT-based models do not do well in label prediction which limits model performance improvement. Many existing models can be compatible with this issue but some hidden semantic information is discarded in the fine-tuning process. We address the problem by introducing a novel joint method on top of BERT which explicitly models the multiple sub-tokens features after wordpiece tokenization, thereby contributing to the two tasks. Our method can well extract the contextual features from complex tokens by the proposed sub-words attention adapter (SAA), which preserves overall utterance information. Additionally, we propose an intent attention adapter (IAA) to obtain the full sentence features to aid users to predict intent. Experimental results confirm that our proposed model is significantly improved on two public benchmark datasets. In particular, the slot filling F1 score is improved from 96.1 to 98.2 (2.1% absolute) on the Airline Travel Information Systems (ATIS) dataset.