论文标题

部分可观测时空混沌系统的无模型预测

Nonlinear Rayleigh-Taylor instability of the viscous surface wave in an infinitely deep ocean

论文作者

Nguyen, Tien-Tai

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In this paper, we consider an incompressible viscous fluid in an infinitely deep ocean, being bounded above by a free moving boundary. The governing equations are the gravity-driven incompressible Navier-Stokes equations with variable density and no surface tension is taken into account on the free surface. After using the Lagrangian transformation, we write the main equations in a perturbed form in a fixed domain. In the first part, we describe a spectral analysis of the linearized equations around a hydrostatic equilibrium $(ρ_0(x_3), 0, P_0(x_3))$ for a smooth increasing density profile $ρ_0$. Precisely, we prove that there exist infinitely many normal modes to the linearized equations by following the operator method initiated by Lafitte and Nguyen. In the second part, we study the nonlinear Rayleigh-Taylor instability around the above profile by constructing a \textit{wide class} of initial data for the nonlinear perturbation problem departing from the equilibrium, based on the finding of infinitely many normal modes. Our nonlinear result follows the previous framework of Guo and Strauss and also of Grenier with a refinement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源