论文标题
部分可观测时空混沌系统的无模型预测
Classical freeness of orthosymplectic affine vertex superalgebras
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The question of when a vertex algebra is a quantization of the arc space of its associated scheme has recently received a lot of attention in both the mathematics and physics literature. This property was first studied by Tomoyuki Arakawa and Anne Moreau [Lectures on $\mathcal{W}$-algebras, Australian Representation Theory Workshop 2016, University of Melbourne], and was given the name "classical freeness" by Jethro van Ekeren and Reimundo Heluani in their work on chiral homology [Comm. Math. Phys. 386 (2021), no. 1, 495-550]. Later, it was extended to vertex superalgebras by Hao Li [Eur. J. Math. 7 (2021), 1689-1728]. In this note, we prove the classical freeness of the simple affine vertex superalgebra $L_n(\mathfrak{osp}_{m|2r})$ for all positive integers $m,n,r$ satisfying $-\frac{m}{2} + r +n+1 > 0$. In particular, it holds for the rational vertex superalgebras $L_n(\mathfrak{osp}_{1|2r})$ for all positive integers $r,n$.