论文标题
部分可观测时空混沌系统的无模型预测
Discretized Linear Regression and Multiclass Support Vector Based Air Pollution Forecasting Technique
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Air pollution is a vital issue emerging from the uncontrolled utilization of traditional energy sources as far as developing countries are concerned. Hence, ingenious air pollution forecasting methods are indispensable to minimize the risk. To that end, this paper proposes an Internet of Things (IoT) enabled system for monitoring and controlling air pollution in the cloud computing environment. A method called Linear Regression and Multiclass Support Vector (LR-MSV) IoT-based Air Pollution Forecast is proposed to monitor the air quality data and the air quality index measurement to pave the way for controlling effectively. Extensive experiments carried out on the air quality data in the India dataset have revealed the outstanding performance of the proposed LR-MSV method when benchmarked with well-established state-of-the-art methods. The results obtained by the LR-MSV method witness a significant increase in air pollution forecasting accuracy by reducing the air pollution forecasting time and error rate compared with the results produced by the other state-of-the-art methods