论文标题

carnatic音乐中鼓中风的自动转录

Automatic Transcription of Drum Strokes in Carnatic Music

论文作者

Chandramouli, Kausthubh, Sethares, William

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The mridangam is a double-headed percussion instrument that plays a key role in Carnatic music concerts. This paper presents a novel automatic transcription algorithm to classify the strokes played on the mridangam. Onset detection is first performed to segment the audio signal into individual strokes, and feature vectors consisting of the DFT magnitude spectrum of the segmented signal are generated. A multi-layer feedforward neural network is trained using the feature vectors as inputs and the manual transcriptions as targets. Since the mridangam is a tonal instrument tuned to a given tonic, tonic invariance is an important feature of the classifier. Tonic invariance is achieved by augmenting the dataset with pitch-shifted copies of the audio. This algorithm consistently yields over 83% accuracy on a held-out test dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源