论文标题
部分可观测时空混沌系统的无模型预测
A mathematical theory of super-resolution and two-point resolution
论文作者
论文摘要
本文着重于超分辨率的基本方面,尤其是针对超分辨率的稳定性和两点分辨率的估计。我们的第一个主要贡献是引入两个位置振幅身份,这些身份表征了一维超分辨率问题中的位置和真实和恢复来源幅度之间的关系。这些身份有助于直接推导恢复来源的数量,位置和幅度的超分辨率功能,从而大大提高了现有的估计为实际相关性水平。作为自然扩展,我们在超分辨率问题中建立了特定$ L_0 $最小化算法的稳定性。 本文的第二个关键贡献是多维空间中两点分辨率限制的理论证明。分辨率限制表示为: \ [ r = \ frac {4 \ arcsin \ left(\ left(\fracσ{m _ {\ min}}}} \ rigr) \] 对于$ \fracσ{m _ {\ min}} \ leq \ frac {1} {2} $,其中$ \fracσ{m _ {\ min}} $代表信号到噪声比率的倒数($ \ mathrm {snr} $)和$ cutoff cutoff。它还表明,对于解决两个点源,当信噪比(SNR)超过$ 2 $时,分辨率可以超过瑞利限制$ \fracπΩ$。此外,我们发现了一种可拖动的算法,该算法在区分两个来源时可实现分辨率$ r $。
This paper focuses on the fundamental aspects of super-resolution, particularly addressing the stability of super-resolution and the estimation of two-point resolution. Our first major contribution is the introduction of two location-amplitude identities that characterize the relationships between locations and amplitudes of true and recovered sources in the one-dimensional super-resolution problem. These identities facilitate direct derivations of the super-resolution capabilities for recovering the number, location, and amplitude of sources, significantly advancing existing estimations to levels of practical relevance. As a natural extension, we establish the stability of a specific $l_0$ minimization algorithm in the super-resolution problem. The second crucial contribution of this paper is the theoretical proof of a two-point resolution limit in multi-dimensional spaces. The resolution limit is expressed as: \[ R = \frac{4\arcsin \left(\left(\fracσ{m_{\min}}\right)^{\frac{1}{2}} \right)}Ω \] for $\fracσ{m_{\min}}\leq\frac{1}{2}$, where $\fracσ{m_{\min}}$ represents the inverse of the signal-to-noise ratio ($\mathrm{SNR}$) and $Ω$ is the cutoff frequency. It also demonstrates that for resolving two point sources, the resolution can exceed the Rayleigh limit $\fracπΩ$ when the signal-to-noise ratio (SNR) exceeds $2$. Moreover, we find a tractable algorithm that achieves the resolution $R$ when distinguishing two sources.