论文标题

使用图神经网络学习Feynman图

Learning Feynman Diagrams using Graph Neural Networks

论文作者

Mitchell, Harrison, Norcliffe, Alexander, Liò, Pietro

论文摘要

随着机器学习在粒子物理学中日益普及的情况之后,这项工作发现了对Feynman图的几何深度学习的新应用,以进行准确,快速的矩阵元素预测,并有可能用于分析量子场理论。这项研究使用图表层,该图层使矩阵元素预测到1次高于90%的时间的1个重要数字准确性。在10%的时间内,培训少于200个时代的时间超过10%,可以实现峰值性能,以预测3个重要的数字准确性,这是一种概念证明,以证明未来的作品可以基于更好的性能。最后,建议使用网络,通过用代表非扰动计算的有效粒子构造Feynman图来实现量子场理论的进步。

In the wake of the growing popularity of machine learning in particle physics, this work finds a new application of geometric deep learning on Feynman diagrams to make accurate and fast matrix element predictions with the potential to be used in analysis of quantum field theory. This research uses the graph attention layer which makes matrix element predictions to 1 significant figure accuracy above 90% of the time. Peak performance was achieved in making predictions to 3 significant figure accuracy over 10% of the time with less than 200 epochs of training, serving as a proof of concept on which future works can build upon for better performance. Finally, a procedure is suggested, to use the network to make advancements in quantum field theory by constructing Feynman diagrams with effective particles that represent non-perturbative calculations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源