论文标题
原子链网络上层建筑中的平坦乐队
Flat bands in Network Superstructures of Atomic Chains
论文作者
论文摘要
我们研究了原子链网络上层建筑中平坦带无处不在的起源,该网络上层结构定期定期定期(1D)原子链阵列。虽然可以有很多连接这些链条的方法,但我们考虑了两种代表性的链接方式,即点型和三角形型链接。然后,我们构建了各种具有点型链接的正方形,矩形和蜂窝网络上层建筑,以及带有三角形型链接的蜂窝上层建筑。这些链接为波形提供了具有破坏性干扰的机会,从而稳定了紧凑的局部状态(CLS)。 CLS是一个局部的本征态,其幅度仅在有限的区域内才有有限,并保证存在平坦带。在网络上层建筑中,存在与每个链的原子数成正比的多个平坦频段,并且可以从紧凑型局部状态的稳定性条件中找到相应的特征力。最后,我们证明,通过增加由上层结构组成的链的长度来抑制网络上层建筑的几乎平坦带的有限带宽。
We investigate the origin of the ubiquitous existence of flat bands in the network superstructures of atomic chains, where one-dimensional(1D) atomic chains array periodically. While there can be many ways to connect those chains, we consider two representative ways of linking them, the dot-type and triangle-type links. Then, we construct a variety of superstructures, such as the square, rectangular, and honeycomb network superstructures with dot-type links and the honeycomb superstructure with triangle-type links. These links provide the wavefunctions with an opportunity to have destructive interference, which stabilizes the compact localized state(CLS). The CLS is a localized eigenstate whose amplitudes are finite only inside a finite region and guarantees the existence of a flat band. In the network superstructures, there exist multiple flat bands proportional to the number of atoms of each chain, and the corresponding eigenenergies can be found from the stability condition of the compact localized state. Finally, we demonstrate that the finite bandwidth of the nearly flat bands of the network superstructures arising from the next-nearest-neighbor hopping processes can be suppressed by increasing the length of the chains consisting of the superstructures.