论文标题

攻击不公平的TOS子句检测:使用通用对抗触发器的案例研究

Attack on Unfair ToS Clause Detection: A Case Study using Universal Adversarial Triggers

论文作者

Xu, Shanshan, Broda, Irina, Haddad, Rashid, Negrini, Marco, Grabmair, Matthias

论文摘要

最近的工作表明,自然语言处理技术可以通过自动检测服务条款(TOS)协议的不公平条款来支持消费者保护。这项工作表明,基于变压器的TOS分析系统容易受到对抗性攻击的影响。我们进行了使用通用对抗触发器攻击不公平的差异检测器的实验。实验表明,文本的少量扰动可以大大降低检测性能。此外,为了衡量触发因素的可检测性,我们通过从参与者那里收集答案准确性和响应时间来进行详细的人类评估研究。结果表明,触发器的自然性仍然是诱使读者的关键。

Recent work has demonstrated that natural language processing techniques can support consumer protection by automatically detecting unfair clauses in the Terms of Service (ToS) Agreement. This work demonstrates that transformer-based ToS analysis systems are vulnerable to adversarial attacks. We conduct experiments attacking an unfair-clause detector with universal adversarial triggers. Experiments show that a minor perturbation of the text can considerably reduce the detection performance. Moreover, to measure the detectability of the triggers, we conduct a detailed human evaluation study by collecting both answer accuracy and response time from the participants. The results show that the naturalness of the triggers remains key to tricking readers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源