论文标题

来自无轨道相关的密度功能理论的原子壳结构Pauli潜力

Atomic shell structure from an orbital-free-related density-functional-theory Pauli potential

论文作者

Thompson, Russell B.

论文摘要

聚合物自洽场理论技术用于找到径向电子密度和分离原子的总结合能。将量子颗粒建模为具有四维热空间中环聚合物结构的高斯线,并根据在于于均值场近似中使用Edwards/Flory-Huggins相互作用在热空间中实现的经典排除体积来假定Pauli电位。其他近似值包括对电子电子自相互作用的Fermi-amaldi校正,一个降低问题维度的球形平均近似以及相关性的忽视。聚合物缩放理论用于表明Pauli电位的排除体积形式在均匀极限下降低至已知的Thomas-Fermi能量密度。在周期表的前18个元素中,使用双线性傅立叶膨胀函数来求解自洽的方程式。径向电子密度显示正确的壳结构,与已知结合能相比,最轻元素的总结合能的误差小于9%,而对原子比氮的原子降至3%或更少。更普遍地,建议在经典统计力学中只需要两种假设,以实现具有静态的,非偏好的量子力学的预测等效性:首先,将量子粒子建模为在四维热空间中的高斯线,其次,第二个线程(允许旋转)(允许旋转)(允许旋转)(允许旋转)中的超级范围(允许旋转),是在phermal-space中的体积。结果表明,在热空间中的这两个假设与海森堡的不确定性原理和保利排除原理相同。

Polymer self-consistent field theory techniques are used to find radial electron densities and total binding energies for isolated atoms. Quantum particles are modelled as Gaussian threads with ring-polymer architecture in a four dimensional thermal-space, and a Pauli potential is postulated based on classical excluded volume implemented in the thermal-space using Edwards/Flory-Huggins interactions in a mean-field approximation. Other approximations include a Fermi-Amaldi correction for electron-electron self-interactions, a spherical averaging approximation to reduce the dimensionality of the problem, and the neglect of correlations. Polymer scaling theory is used to show that the excluded volume form of Pauli potential reduces to the known Thomas-Fermi energy density in the uniform limit. Self-consistent equations are solved using a bilinear Fourier expansion, with radial basis functions, for the first eighteen elements of the periodic table. Radial electron densities show correct shell structure, and the errors on the total binding energies compared to known binding energies are less than 9% for the lightest elements and drop to 3% or less for atoms heavier than nitrogen. More generally, it is suggested that only two postulates are needed within classical statistical mechanics to achieve equivalency of predictions with static, non-relativistic quantum mechanics: First, quantum particles are modelled as Gaussian threads in four dimensional thermal-space and, second, pairs of threads (allowing for spin) are subject to classical excluded volume in the thermal-space. It is shown that these two postulates in thermal-space become the same as the Heisenberg uncertainty principle and the Pauli exclusion principle in three dimensional space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源