论文标题
$ \ bar {\ partial} $ - Zero for Quantum Quadric $ \ Mathcal {O} _Q(\ TextBf {q} _N)零form的频谱。
Spectrum of the $\bar{\partial}$-Laplace operator on zero forms for the quantum quadric $\mathcal{O}_q(\textbf{Q}_N)$
论文作者
论文摘要
我们研究laplacian操作员$δ_{\ bar {\ partial}} $与kähler结构$(ω^{(\ bulet,\ bulet)},κ)$ for heckenberger-- kolb- kolb- kolb的量子差异计算,可以说,类型$ b_n $和$ d_n $的不可还原量子标志歧管。我们表明,零形式的$δ_{\ bar {\ partial}} $的特征值倾向于无限且具有有限的多重性。
We study the Laplacian operator $Δ_{\bar{\partial}}$ associated to a Kähler structure $(Ω^{(\bullet, \bullet)}, κ)$ for the Heckenberger--Kolb differential calculus of the quantum quadrics $\mathcal{O}_q(\textbf{Q}_N)$, which is to say, the irreducible quantum flag manifolds of types $B_n$ and $D_n$. We show that the eigenvalues of $Δ_{\bar{\partial}}$ on zero forms tend to infinity and have finite multiplicity.