论文标题

双曲线晶格上的细节颗粒的Y-Cube模型和分形结构

Y-cube model and fractal structure of subdimensional particles on hyperbolic lattices

论文作者

Yan, Han, Slagle, Kevin, Nevidomskyy, Andriy H.

论文摘要

与普通的拓扑量子阶段不同,Fracton顺序密切取决于基础晶格几何形状。在这项工作中,我们研究了嵌入在$ h_2 \ times s^1 $空间的晶格上的X-Cube模型的概括,称为Y-Cube模型,即一堆双曲机平面。名称“ Y-Cube”来自X-Cube X形顶点操作员的类似物的Y形。我们证明,对于某些双曲线晶格镶嵌,Y-Cube模型设有一种新型的细节粒子Treeons,它只能在晶格的分形子集上移动。这种激发仅出现在双曲线几何形状上。在平坦的空间上,树木变成了lineon或planeon。有趣的是,我们发现,对于某些双曲线镶嵌,可以由膜操作员(如X-Cube模型)或双曲线平面内的分形算子创建。

Unlike ordinary topological quantum phases, fracton orders are intimately dependent on the underlying lattice geometry. In this work, we study a generalization of the X-cube model, dubbed the Y-cube model, on lattices embedded in $H_2\times S^1$ space, i.e., a stack of hyperbolic planes. The name `Y-cube' comes from the Y-shape of the analog of the X-cube's X-shaped vertex operator. We demonstrate that for certain hyperbolic lattice tesselations, the Y-cube model hosts a new kind of subdimensional particle, treeons, which can only move on a fractal-shaped subset of the lattice. Such an excitation only appears on hyperbolic geometries; on flat spaces treeons becomes either a lineon or a planeon. Intriguingly, we find that for certain hyperbolic tesselations, a fracton can be created by a membrane operator (as in the X-cube model) or by a fractal-shaped operator within the hyperbolic plane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源