论文标题
针对代数,代表理论和几何形状的非共同领域中的曲折入门
A Primer on Twists in the Noncommutative Realm Focusing on Algebra, Representation Theory, and Geometry
论文作者
论文摘要
我们回顾了几种扭曲代数的乘法结构的技术。我们首先以自动形态(也称为Zhang Twist)的曲折考虑曲折,然后将它们与某些双ggebras的2个循环曲折联系起来。然后,我们概述了扭曲张量产品的分类和性能,并检查了扭曲的Segre产品。我们的博览会强调了对普遍性的清晰度,提供了大量相互联系的例子。
We review several techniques that twist an algebra's multiplicative structure. We first consider twists by an automorphism, also known as Zhang twists, and we relate them to 2-cocycle twists of certain bialgebras. We then outline the classification and properties of twisted tensor products, and we examine twisted Segre products. Our exposition emphasizes clarity over generality, providing a wealth of interconnecting examples.