论文标题

通过Vidhoc启用个性化视频质量优化

Enabling Personalized Video Quality Optimization with VidHoc

论文作者

Zhang, Xu, Schmitt, Paul, Chetty, Marshini, Feamster, Nick, Jiang, Junchen

论文摘要

新兴的视频应用程序大大增加了网络带宽的需求,这并不容易扩展。为了在有限的带宽下提供更高的经验(QOE),最近的趋势是利用各个用户的质量偏好的异质性。尽管这些努力提出了巨大的潜在收益,但服务提供商仍未部署他们来实现所承诺的QoE改进。缺少的作品是针对新用户的在线每用户QOE建模和优化方案的自动化。先前的努力要么通过已知的user QoE模型优化QoE,要么通过离线方法来学习用户的QOE模型,例如对视频观看历史记录和LAB用户研究的分析。依靠这种离线建模是有问题的,因为QOE优化将开始迟到,以收集足够的数据来训练无偏见的QoE模型。在本文中,我们提出了Vidhoc,这是第一个联合个性化QoE模型并以在线方式为每个新用户优化QOE的自动系统。 Vidhoc可以在少数视频会话中构建每用户QOE模型,并保持良好的QoE。我们在统计有效性的情况下对15个用户进行了四个月的15个用户评估Vidhoc。与其他基线相比,结果表明,Vidhoc可以节省17.3%的带宽,同时保持相同的QOE或在相同的带宽中将QoE提高13.9%。

The emerging video applications greatly increase the demand in network bandwidth that is not easy to scale. To provide higher quality of experience (QoE) under limited bandwidth, a recent trend is to leverage the heterogeneity of quality preferences across individual users. Although these efforts have suggested the great potential benefits, service providers still have not deployed them to realize the promised QoE improvement. The missing piece is an automation of online per-user QoE modeling and optimization scheme for new users. Previous efforts either optimize QoE by known per-user QoE models or learn a user's QoE model by offline approaches, such as analysis of video viewing history and in-lab user study. Relying on such offline modeling is problematic, because QoE optimization will start late for collecting enough data to train an unbiased QoE model. In this paper, we propose VidHoc, the first automatic system that jointly personalizes QoE model and optimizes QoE in an online manner for each new user. VidHoc can build per-user QoE models within a small number of video sessions as well as maintain good QoE. We evaluate VidHoc in a pilot deployment to fifteen users for four months with the care of statistical validity. Compared with other baselines, the results show that VidHoc can save 17.3% bandwidth while maintaining the same QoE or improve QoE by 13.9% with the same bandwidth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源