论文标题
相互作用的无质旋转4和实际标量场中相互作用的立方顶点
Cubic vertices of interacting massless spin 4 and real scalar fields in unconstrained formulation
论文作者
论文摘要
新方法(ARXIV:2104.11930)用于构建无质量自旋4和真实标量场的立方相互作用。与无质量自旋3场(ARXIV:2208.05700,2209.03678,2210.02842)相反,该程序要求对Fronsdal理论使用不受限制的配方(Arxiv:0702.161)。结果表明,在无约束的公式中,存在无质量旋转4和真实标量场之间的四个参数家族,该家族在顶点中包含四个衍生物,并且相对于原始量规变换是不变的。这些顶点也包含辅助和标量场之间的立方相互作用。使用初始作用的运动方程式从获得的结果中消除所有辅助场,从而为约束无质量自旋4和实际标量磁场提供了一个参数的立方顶点家族,相对于Fronsdal理论的受约束仪表转换,这种立方顶点是不变的。
New method (arXiv:2104.11930) is applied to construct cubic interactions of massless spin 4 and real scalar fields. In contrast with the case of massless spin 3 fields (arXiv:2208.05700, 2209.03678, 2210.02842) the procedure requires to use an unconstrained formulation (arXiv:0702.161) for the Fronsdal theory. It is shown that in the unconstrained formulation there exists a four-parameter family of cubic interactions between massless spin 4 and real scalar fields, which contains four derivatives in vertices and is invariant with respect to the original gauge transformation. These vertices contain cubic interactions between auxiliary and scalar fields too. Eliminating all auxiliary fields from the obtained result using the equations of motion for the initial action gives a one-parameter family of cubic vertices for constrained massless spin 4 and real scalar fields, Such cubic vertices are invariant with respect to constrained gauge transformations of the Fronsdal theory.