论文标题
即使没有基本数据,也可以更好地概括地学习
Better Generalized Few-Shot Learning Even Without Base Data
论文作者
论文摘要
本文介绍并研究了零基本的综合学习(零基数GFSL),这是几个少学习问题的极端但实用的版本。由于隐私或道德问题,基本数据无法获得的案例,零基数GFSL的目标是将新的类别样本的知识纳入了一个预验证的模型,而没有任何基本类别的样本。根据我们的分析,我们发现与基础类别相比,新型类别的体重分布的平均值和差异均未正确确定。现有的GFSL方法试图使权重规范平衡,我们发现这仅有助于方差部分,但要丢弃权重平均值,尤其是对于新颖类的重要性,即使基本数据也导致GFSL问题的性能有限。在本文中,我们通过提出一种简单而有效的归一化方法来克服这一局限性,该方法可以有效地控制新类别的平均值和体重分布的均值和方差,而无需使用任何基本样本,从而在新颖和基础类别上都能达到令人满意的性能。我们的实验结果有些令人惊讶地表明,所提出的零基数GFSL方法甚至不利用任何基本样本,甚至超过了现有的GFSL方法,这些方法可以充分利用基本数据。我们的实现可在以下网址提供:https://github.com/bigdata-inha/zero-base-gfsl。
This paper introduces and studies zero-base generalized few-shot learning (zero-base GFSL), which is an extreme yet practical version of few-shot learning problem. Motivated by the cases where base data is not available due to privacy or ethical issues, the goal of zero-base GFSL is to newly incorporate the knowledge of few samples of novel classes into a pretrained model without any samples of base classes. According to our analysis, we discover the fact that both mean and variance of the weight distribution of novel classes are not properly established, compared to those of base classes. The existing GFSL methods attempt to make the weight norms balanced, which we find helps only the variance part, but discard the importance of mean of weights particularly for novel classes, leading to the limited performance in the GFSL problem even with base data. In this paper, we overcome this limitation by proposing a simple yet effective normalization method that can effectively control both mean and variance of the weight distribution of novel classes without using any base samples and thereby achieve a satisfactory performance on both novel and base classes. Our experimental results somewhat surprisingly show that the proposed zero-base GFSL method that does not utilize any base samples even outperforms the existing GFSL methods that make the best use of base data. Our implementation is available at: https://github.com/bigdata-inha/Zero-Base-GFSL.