论文标题
PACMO:使用神经操作员在二元人类活动中依赖伴侣的人类运动产生
PaCMO: Partner Dependent Human Motion Generation in Dyadic Human Activity using Neural Operators
论文作者
论文摘要
我们解决了在二元活动中产生3D人类动作的问题。与并发作品相反,该作品主要集中于从文本描述中产生单个演员的动作,我们从另一个参与者的动作中产生了一位参与者的运动。这是一个特别具有挑战性的问题,需要学习参与行动的运动的运动之间的复杂关系,并从一个参与者的动作中识别行动。为了解决这些问题,我们提出了合作伙伴条件运动操作员(PACMO),这是一种基于神经操作员的生成模型,该模型通过对抗性训练来了解伴侣运动在功能空间中的运动调节的人类运动的分布。我们的模型可以在任意时间分辨率下处理长期未标记的动作序列。我们还介绍了“功能特征启动距离”($ f^2ID $)度量,以捕获功能空间的真实数据和生成数据之间的相似性。我们在NTU RGB+D和Duetdance数据集上测试PACMO,我们的模型产生了由$ f^2ID $得分和进行的用户研究所证明的现实结果。
We address the problem of generating 3D human motions in dyadic activities. In contrast to the concurrent works, which mainly focus on generating the motion of a single actor from the textual description, we generate the motion of one of the actors from the motion of the other participating actor in the action. This is a particularly challenging, under-explored problem, that requires learning intricate relationships between the motion of two actors participating in an action and also identifying the action from the motion of one actor. To address these, we propose partner conditioned motion operator (PaCMO), a neural operator-based generative model which learns the distribution of human motion conditioned by the partner's motion in function spaces through adversarial training. Our model can handle long unlabeled action sequences at arbitrary time resolution. We also introduce the "Functional Frechet Inception Distance" ($F^2ID$) metric for capturing similarity between real and generated data for function spaces. We test PaCMO on NTU RGB+D and DuetDance datasets and our model produces realistic results evidenced by the $F^2ID$ score and the conducted user study.