论文标题
一个生物学上的可转化有机模式分类器
A biologically interfaced evolvable organic pattern classifier
论文作者
论文摘要
未来的脑部计算机界面将需要神经系统和其他活组织中完全集成的电子电路的局部和高度个性化的信号处理。将需要开发新的设备,这些设备可以从传感器阵列中接收数据,将数据处理为有意义的信息,并将这些信息转换为生活系统可以解释的格式。在这里,我们报告了将基于硬件的模式分类器与生物神经联系起来的第一个示例。分类器在一系列可转化的有机电化学晶体管(EOECTS)上实现了widrow-hoff学习算法。通过将通道内的半导体材料进行电聚合,可以在原位调节EOECT的通道电导,从而使低压操作,高可重现性以及在最新的OECT设备上的两个数量级的状态保留率提高。使用有机电化学尖峰神经元将有机分类器与生物神经连接,以将分类器的输出转化为模拟动作电位。然后,后者根据输入模式选择性地刺激肌肉收缩,从而为闭环治疗系统的发展铺平了道路。
Future brain-computer interfaces will require local and highly individualized signal processing of fully integrated electronic circuits within the nervous system and other living tissue. New devices will need to be developed that can receive data from a sensor array, process data into meaningful information, and translate that information into a format that living systems can interpret. Here, we report the first example of interfacing a hardware-based pattern classifier with a biological nerve. The classifier implements the Widrow-Hoff learning algorithm on an array of evolvable organic electrochemical transistors (EOECTs). The EOECTs' channel conductance is modulated in situ by electropolymerizing the semiconductor material within the channel, allowing for low voltage operation, high reproducibility, and an improvement in state retention of two orders of magnitude over state-of-the-art OECT devices. The organic classifier is interfaced with a biological nerve using an organic electrochemical spiking neuron to translate the classifier's output to a simulated action potential. The latter is then used to stimulate muscle contraction selectively based on the input pattern, thus paving the way for the development of closed-loop therapeutic systems.