论文标题
$ \ mathbb {r}^n $的最小动态系统
Minimal Dynamical System for $\mathbb{R}^n$
论文作者
论文摘要
我们将$ \ mathbb {r}^n $作为带有欧几里得拓扑的加性组,以提供$ s(\ m athbb {r}^n)$的描述,这是$ \ mathbb {r}^n $ and $ m(\ mathbb {r}^n)$的$ \ mathbb {r}^n $的通用范围的相位空间$ m(\ mathbb {z}^n)$,$ \ mathbb {z}^n $的通用最小流量的相位空间。这将Turek的工作扩展到$ \ Mathbb {r} $到$ \ Mathbb {r}^n $。
We investigate $\mathbb{R}^n$ as the additive group with the Euclidean topology to give a description of $S(\mathbb{R}^n)$, the phase space of the universal ambit of $\mathbb{R}^n$ and $M(\mathbb{R}^n)$, the phase space of the universal minimal dynamical system, in terms of $M(\mathbb{Z}^n)$, the phase space of universal minimal flow of $\mathbb{Z}^n$. This extends work by Turek for $\mathbb{R}$ to $\mathbb{R}^n$.