论文标题

$ \ mathbb {r}^n $的最小动态系统

Minimal Dynamical System for $\mathbb{R}^n$

论文作者

Vishnubhotla, Ankit

论文摘要

我们将$ \ mathbb {r}^n $作为带有欧几里得拓扑的加性组,以提供$ s(\ m athbb {r}^n)$的描述,这是$ \ mathbb {r}^n $ and $ m(\ mathbb {r}^n)$的$ \ mathbb {r}^n $的通用范围的相位空间$ m(\ mathbb {z}^n)$,$ \ mathbb {z}^n $的通用最小流量的相位空间。这将Turek的工作扩展到$ \ Mathbb {r} $到$ \ Mathbb {r}^n $。

We investigate $\mathbb{R}^n$ as the additive group with the Euclidean topology to give a description of $S(\mathbb{R}^n)$, the phase space of the universal ambit of $\mathbb{R}^n$ and $M(\mathbb{R}^n)$, the phase space of the universal minimal dynamical system, in terms of $M(\mathbb{Z}^n)$, the phase space of universal minimal flow of $\mathbb{Z}^n$. This extends work by Turek for $\mathbb{R}$ to $\mathbb{R}^n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源