论文标题
带有随机$π$的蜂窝晶格中的运输:对基塔夫旋转液体中低温热传输的影响
Transport in honeycomb lattice with random $π$-fluxes: implications for low-temperature thermal transport in the Kitaev spin liquids
论文作者
论文摘要
在Kitaev旋转液体中的热传输问题的激励中,我们考虑了在存在随机不相关的$π$ -Fluxes的情况下,在蜂窝晶格上最近的邻居紧密结合模型。我们采用不同的数值方法来研究其运输特性,几乎是填充的。远离狄拉克点的零温度直流电导率在费米动量中是二次的,并且与通量密度成反比。观察到由于随机$π$ - 流体而引起的本地化,并提取了定位长度。我们的结果表明,对于实际的系统尺寸,纯kitaev旋转液体的热导率与$κ__\ text {k} \ sim t^3 e^e^e^e^{Δ_v/k_bt} $当$ k_b t \llΔ_v$时k_b^2/2π\ hbar $当$ k_b t \simΔ_v$,其中$Δ_V$是vison间隙。
Motivated by the thermal transport problem in the Kitaev spin liquids, we consider a nearest-neighbor tight-binding model on the honeycomb lattice in the presence of random uncorrelated $π$-fluxes. We employ different numerical methods to study its transport properties near half-filling. The zero-temperature DC conductivity away from the Dirac point is found to be quadratic in Fermi momentum and inversely proportional to the flux density. Localization due to the random $π$-fluxes is observed and the localization length is extracted. Our results imply that, for realistic system size, the thermal conductivity of a pure Kitaev spin liquid diverges as $κ_\text{K}\sim T^3 e^{Δ_v/k_BT}$ when $k_B T\ll Δ_v$, and suggest the possible occurrence of strong Majorana localization $κ_\text{K}/T\ll k_B^2/2π\hbar$ when $k_B T\sim Δ_v$, where $Δ_v$ is the vison gap.