论文标题
我现在在哪里?动态寻找最佳传感器状态,以最大程度地减少受感知约束的漫游者的本地化不确定性
Where Am I Now? Dynamically Finding Optimal Sensor States to Minimize Localization Uncertainty for a Perception-Denied Rover
论文作者
论文摘要
我们提出了堤防,这是一种活跃的感知方法,它动态地找到最佳状态,以最大程度地减少定位不确定性,同时避免障碍物和遮挡。我们考虑以感知约束的漫游者依赖于观众机器人的位置和不确定性测量的情况,以沿着障碍物填充的路径进行定位。观众传感器的位置不确定性是传感器本身,漫游者和周围环境状态的函数。为了找到最大程度地减少流动站的本地化不确定性的最佳传感器状态,Dyfos在优化搜索中使用定位不确定性预测管道。鉴于上述状态的大量样本,该管道借助训练有素的,复杂的状态依赖性传感器测量模型(概率神经网络)来预测流动站的本地化不确定性。我们的管道还可以预测遮挡和障碍物碰撞,以消除不良的观众状态并减少不必要的计算。我们通过数值和模拟评估所提出的方法。我们的结果表明,堤防比蛮力更快,但在PAR上执行。与更快的随机和基于启发式的搜索相比,堤防还产生了较低的本地化不确定性。
We present DyFOS, an active perception method that dynamically finds optimal states to minimize localization uncertainty while avoiding obstacles and occlusions. We consider the scenario where a perception-denied rover relies on position and uncertainty measurements from a viewer robot to localize itself along an obstacle-filled path. The position uncertainty from the viewer's sensor is a function of the states of the sensor itself, the rover, and the surrounding environment. To find an optimal sensor state that minimizes the rover's localization uncertainty, DyFOS uses a localization uncertainty prediction pipeline in an optimization search. Given numerous samples of the states mentioned above, the pipeline predicts the rover's localization uncertainty with the help of a trained, complex state-dependent sensor measurement model (a probabilistic neural network). Our pipeline also predicts occlusion and obstacle collision to remove undesirable viewer states and reduce unnecessary computations. We evaluate the proposed method numerically and in simulation. Our results show that DyFOS is faster than brute force yet performs on par. DyFOS also yielded lower localization uncertainties than faster random and heuristic-based searches.