论文标题
净负荷不确定性下的单位承诺决策的预测处方
Predictive Prescription of Unit Commitment Decisions Under Net Load Uncertainty
论文作者
论文摘要
为了在不确定的净负荷下采取单位承诺(UC)决策,大多数研究都采用随机UC(SUC)模型,该模型采用了不确定性的一定程度的所有表示。这些模型无视天气预报和时间信息之类的上下文信息,通常会受到较差的样本外部表现的困扰。为了有效利用上下文信息,在本文中,我们制定了一个条件性的问题,该问题被解决了协变量观察。提出的问题依赖于净负载的真实条件分布,因此在实践中无法解决。为了近似其解决方案,我们提出了一个预测性处方框架,该框架利用机器学习模型来得出用于解决重量重量样本平均近似问题的权重。与现有的预测处方框架相反,我们根据特定数据集操纵学习模型提供的权重,提出一种选择相关协变量的方法,并根据其策略的样本成本调整框架的超参数。我们进行了广泛的数值研究,列出了相对于各种基准测试的框架的相对优点。
To take unit commitment (UC) decisions under uncertain net load, most studies utilize a stochastic UC (SUC) model that adopts a one-size-fits-all representation of uncertainty. Disregarding contextual information such as weather forecasts and temporal information, these models are typically plagued by a poor out-of-sample performance. To effectively exploit contextual information, in this paper, we formulate a conditional SUC problem that is solved given a covariate observation. The presented problem relies on the true conditional distribution of net load and so cannot be solved in practice. To approximate its solution, we put forward a predictive prescription framework, which leverages a machine learning model to derive weights that are used in solving a reweighted sample average approximation problem. In contrast with existing predictive prescription frameworks, we manipulate the weights that the learning model delivers based on the specific dataset, present a method to select pertinent covariates, and tune the hyperparameters of the framework based on the out-of-sample cost of its policies. We conduct extensive numerical studies, which lay out the relative merits of the framework vis-à-vis various benchmarks.