论文标题

在未来的长基线中微子振荡实验中,新型3D预测闪烁体跟踪器的中子检测和应用

Neutron detection and application with a novel 3D-projection scintillator tracker in the future long-baseline neutrino oscillation experiments

论文作者

Gwon, S., Granger, P., Yang, G., Bolognesi, S., Cai, T., Danilov, M., Delbart, A., De Roeck, A., Dolan, S., Eurin, G., Razakamiandra, R. F., Fedotov, S., Aguirre, G. Fiorentini, Flight, R., Gran, R., Ha, C., Jung, C. K., Jung, K. Y., Kettell, S., Khabibullin, M., Khotjantsev, A., Kordosky, M., Kudenko, Y., Kutter, T., Maneira, J., Manly, S., Caicedo, D. A. Martinez, Mauger, C., McFarland, K., McGrew, C., Mefodev, A., Mineev, O., Naples, D., Olivier, A., Paolone, V., Prasad, S., Riccio, C., Rondon, J. Rodriguez, Sgalaberna, D., Sitraka, A., Siyeon, K., Skrobova, N., Su, H., Suvorov, S., Teklu, A., Tzanov, M., Valencia, E., Wood, K., Worcester, E., Yershov, N.

论文摘要

中微子振荡实验需要精确测量中微子能量。然而,在当前中微子振荡实验中缺少中微子相互作用中最终状态中子的运动学检测。与真正的中微子能量相比,缺失的中子运动检测导致检测到的中微子能量的进料。一个新颖的3D \ TextColor {Black} { - }投影闪烁体跟踪器,由大约一千万个带有光学反射器覆盖的活性立方组成,能够使用快速定时使用快速定时,精美的Grainulluality和高光效率,可以在事件的飞行基础上测量中子动能和指导。 $ \barν_μ$交互倾向于在最终状态下产生中子。通过推断中子动能,可以更好地重建$ \barν_μ$能量,从而获得更紧密的中微子通量约束。本文显示了检测器重建中子动能的能力以及通过在最终状态下没有介子或质子的无电流相互作用来实现的$ \barν_μ$通量约束。

Neutrino oscillation experiments require a precise measurement of the neutrino energy. However, the kinematic detection of the final-state neutron in the neutrino interaction is missing in current neutrino oscillation experiments. The missing neutron kinematic detection results in a feed-down of the detected neutrino energy compared to the true neutrino energy. A novel 3D\textcolor{black}{-}projection scintillator tracker, which consists of roughly ten million active cubes covered with an optical reflector, is capable of measuring the neutron kinetic energy and direction on an event-by-event basis using the time-of-flight technique thanks to the fast timing, fine granularity, and high light yield. The $\barν_μ$ interactions tend to produce neutrons in the final state. By inferring the neutron kinetic energy, the $\barν_μ$ energy can be reconstructed better, allowing a tighter incoming neutrino flux constraint. This paper shows the detector's ability to reconstruct neutron kinetic energy and the $\barν_μ$ flux constraint achieved by selecting the charged-current interactions without mesons or protons in the final state.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源