论文标题

三维纳米级X射线成像的注意力曲(APT),数据采集和计算时间最少

Attentional Ptycho-Tomography (APT) for three-dimensional nanoscale X-ray imaging with minimal data acquisition and computation time

论文作者

Kang, Iksung, Wu, Ziling, Jiang, Yi, Yao, Yudong, Deng, Junjing, Klug, Jeffrey, Vogt, Stefan, Barbastathis, George

论文摘要

纳米级三维对象的无创X射线成像,例如综合电路(IC)通常需要两种类型的扫描:PTYCHOPROCON,它是转化的,并通过IC返回复杂电磁场的估计值;和断层扫描,从多个角度收集复杂的现场预测。在这里,我们介绍了注意力曲(APT),这是一种训练的方法,可通过使用大量减少的角度扫描量进行了精确的IC进行精确重建IC。培训过程包括基于典型的IC模式和X射线传播物理的正规化先验。我们证明,具有12次降角的APT可以实现与原始角度相当的忠诚度。使用相同的降角度,APT还优于基线重建方法。在我们的实验中,APT可以在数据采集和计算中降低108次的总体,而不会损害质量。我们希望我们的物理辅助机器学习框架也可以应用于纳米级成像的其他分支。

Noninvasive X-ray imaging of nanoscale three-dimensional objects, e.g. integrated circuits (ICs), generally requires two types of scanning: ptychographic, which is translational and returns estimates of complex electromagnetic field through ICs; and tomographic scanning, which collects complex field projections from multiple angles. Here, we present Attentional Ptycho-Tomography (APT), an approach trained to provide accurate reconstructions of ICs despite incomplete measurements, using a dramatically reduced amount of angular scanning. Training process includes regularizing priors based on typical IC patterns and the physics of X-ray propagation. We demonstrate that APT with 12-time reduced angles achieves fidelity comparable to the gold standard with the original set of angles. With the same set of reduced angles, APT also outperforms baseline reconstruction methods. In our experiments, APT achieves 108-time aggregate reduction in data acquisition and computation without compromising quality. We expect our physics-assisted machine learning framework could also be applied to other branches of nanoscale imaging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源