论文标题

地球表面的宇宙中微子背景

The Cosmic Neutrino Background on the Surface of the Earth

论文作者

Arvanitaki, Asimina, Dimopoulos, Savas

论文摘要

我们认为,从地球表面的遗物中微子反射会导致重要的局部$ν-\barν$不对称,远远超过了预期的原始Lepton不对称。净分数电子中微子编号$ \ frac {n_ {n_ {n _ {\barν_e}}} {n_ {n_ {ν_e}} $最多可$ \ nathcal {o}(O}(O}(10^5)(10^5)\ sqrt \ sqrt { BARYON不对称暗示。这种增强是由于普通物质对$ν_e$的弱4-FERMI排斥,从而使$ν_e$放慢了地球表面附近的$ν_e$,以及渗透到表面以下的evanevanevanscent中微子波。因此,这种排斥在壳中创建了一个net $ν_e$ uperdensity,$ \ sim 7〜 \ text {meters} \ sqrt {\ frac {\ frac {0.1〜 \ text {ev}} {ev}} {m_ν}}}} $厚地球周围的表面。同样,$ \barν_μ$或$ \barν_τ$与普通物质之间的排斥产生了相似大小的$ \barν_{μ,τ} $的过度。这些本地增强功能增加了$ \ MATHCAL {O}(g_f)$CνB$的$CνB$ TORQUES $ 10^5 $。此外,它们创造了净中微子密度的梯度,自然地提供了四十岁的````'''''''''''定理,以消失$ \ natercal {o}(g_f)$ forces。这种梯度力产生的扭矩可能比早期提案大的$ 10^8 $倍。尽管这些效果的大小仍然远非目前的影响力,但它们可能指向$CνB$检测的新方向。

We argue that the reflection of relic neutrinos from the surface of the Earth results in a significant local $ν-\barν$ asymmetry, far exceeding the expected primordial lepton asymmetry. The net fractional electron neutrino number $\frac{n_{ν_e}-n_{\barν_e}}{n_{ν_e}}$ is up to $\mathcal{O}(10^5) \sqrt{\frac{m_ν}{0.1~\text{eV}}}$ larger than that implied by the baryon asymmetry. This enhancement is due to the weak 4-Fermi repulsion of the $ν_e$ from ordinary matter which slows down the $ν_e$ near the Earth's surface, and to the resulting evanescent neutrino wave that penetrates below the surface. This repulsion thus creates a net $ν_e$ overdensity in a shell $\sim 7~\text{meters} \sqrt{\frac{0.1~\text{eV}}{m_ν}}$ thick around the Earth's surface. Similarly the repulsion between $\barν_μ$ or $\barν_τ$ and ordinary matter creates an overdensity of $\barν_{μ, τ}$ of similar size. These local enhancements increase the size of $\mathcal{O}(G_F)$ torques of the $CνB$ on spin-polarized matter by a factor of order $10^5$. In addition, they create a gradient of the net neutrino density which naturally provides a way out of the forty-year-old ``no-go'' theorems on the vanishing of $\mathcal{O}(G_F)$ forces. The torque resulting from such a gradient force can be $10^8$ times larger than that of earlier proposals. Although the size of these effects is still far from current reach, they may point to new directions for $CνB$ detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源