论文标题

在超级摄像头范围内,800万个星系的形态参数和相关的不确定性

Morphological Parameters and Associated Uncertainties for 8 Million Galaxies in the Hyper Suprime-Cam Wide Survey

论文作者

Ghosh, Aritra, Urry, C. Megan, Mishra, Aayush, Perreault-Levasseur, Laurence, Natarajan, Priyamvada, Sanders, David B., Nagai, Daisuke, Tian, Chuan, Cappelluti, Nico, Kartaltepe, Jeyhan S., Powell, Meredith C., Rau, Amrit, Treister, Ezequiel

论文摘要

我们使用Galaxy形态后估计网络(GAMPEN)在Hyper Suprime-CAM(HSC)宽的调查中以$ Z \ leq 0.75 $和$ M \ M \ LEQ 23 $进行估算的形态参数和相关的不确定性。 Gampen是一个机器学习框架,可估算银河系凸起的光比($ L_B/L_T $),有效半径($ R_E $)和Flux($ f $)的贝叶斯后期。通过对星系模拟的首次培训,然后使用真实数据应用转移学习,我们用$ <1 \%的数据集培训了Gampen。这个两步过程对于将机器学习算法应用于未来的大型成像调查(例如鲁宾时空和时间(LSST),南希·格雷斯·罗马·罗马太空望远镜(NGRST)和Euclid)至关重要。通过将我们的结果与使用轻型拟合获得的结果进行比较,我们证明了Gampen预测的后验分布经过良好的校准($ \ lyssim 5 \%$偏差)且准确。这是对光谱拟合算法的显着改进,该算法低估了不确定性多达$ \ sim60 \%$。对于重叠的子样本,我们还将派生的形态参数与两个外部目录中的值进行比较,发现结果在GA​​MPEN预测的不确定性范围内一致。此步骤还允许我们定义可用于在这两个参数之间转换的Sérsic索引与$ L_B/L_T $之间的经验关系。此处介绍的目录代表了大小($ \ sim10 \ times $),深度($ \ sim4 $ adududes)和不确定性量化的显着改善。通过这项工作,我们还发布了Gampen的源代码和经过训练的模型,可以将其适应其他数据集。

We use the Galaxy Morphology Posterior Estimation Network (GaMPEN) to estimate morphological parameters and associated uncertainties for $\sim 8$ million galaxies in the Hyper Suprime-Cam (HSC) Wide survey with $z \leq 0.75$ and $m \leq 23$. GaMPEN is a machine learning framework that estimates Bayesian posteriors for a galaxy's bulge-to-total light ratio ($L_B/L_T$), effective radius ($R_e$), and flux ($F$). By first training on simulations of galaxies and then applying transfer learning using real data, we trained GaMPEN with $<1\%$ of our dataset. This two-step process will be critical for applying machine learning algorithms to future large imaging surveys, such as the Rubin-Legacy Survey of Space and Time (LSST), the Nancy Grace Roman Space Telescope (NGRST), and Euclid. By comparing our results to those obtained using light-profile fitting, we demonstrate that GaMPEN's predicted posterior distributions are well-calibrated ($\lesssim 5\%$ deviation) and accurate. This represents a significant improvement over light profile fitting algorithms which underestimate uncertainties by as much as $\sim60\%$. For an overlapping sub-sample, we also compare the derived morphological parameters with values in two external catalogs and find that the results agree within the limits of uncertainties predicted by GaMPEN. This step also permits us to define an empirical relationship between the Sérsic index and $L_B/L_T$ that can be used to convert between these two parameters. The catalog presented here represents a significant improvement in size ($\sim10 \times $), depth ($\sim4$ magnitudes), and uncertainty quantification over previous state-of-the-art bulge+disk decomposition catalogs. With this work, we also release GaMPEN's source code and trained models, which can be adapted to other datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源