论文标题

重新思考因果关系驱动的机器人工具分割的时间限制

Rethinking Causality-driven Robot Tool Segmentation with Temporal Constraints

论文作者

Ding, Hao, Wu, Jie Ying, Li, Zhaoshuo, Unberath, Mathias

论文摘要

目的:基于视觉的机器人工具分割在手术机器人和下游任务中起着基本作用。基于互补因果模型的购物车在存在烟,血液等的情况下显示出有希望的反事实手术环境的表现。但是,由于有限的可观察力,手推车需要超过30次优化的迭代才能收敛于单个图像。方法:要解决上述局限性,我们考虑了时间关系,并提出了视频序列上机器人工具分割的时间因果模型。我们设计了一个名为“时间约束”推车(TC-CARTS)的架构。 TC-CART具有三个新型模块以补充推车 - 时间优化管道,运动学校正网络和时空正则化。结果:实验结果表明,TC-Carts需要更少的迭代才能获得与购物车相同或更好的性能。与购物车相比,TC-CART在不同领域的性能也相同或更好。所有三个模块都被证明是有效的。结论:我们提出了TC-Carts,它利用时间约束作为额外的可观察性。我们表明,在机器人工具分割任务中,TC-CART的表现优于先前的工作,从不同域中的测试数据集上提高了收敛速度。

Purpose: Vision-based robot tool segmentation plays a fundamental role in surgical robots and downstream tasks. CaRTS, based on a complementary causal model, has shown promising performance in unseen counterfactual surgical environments in the presence of smoke, blood, etc. However, CaRTS requires over 30 iterations of optimization to converge for a single image due to limited observability. Method: To address the above limitations, we take temporal relation into consideration and propose a temporal causal model for robot tool segmentation on video sequences. We design an architecture named Temporally Constrained CaRTS (TC-CaRTS). TC-CaRTS has three novel modules to complement CaRTS - temporal optimization pipeline, kinematics correction network, and spatial-temporal regularization. Results: Experiment results show that TC-CaRTS requires much fewer iterations to achieve the same or better performance as CaRTS. TC- CaRTS also has the same or better performance in different domains compared to CaRTS. All three modules are proven to be effective. Conclusion: We propose TC-CaRTS, which takes advantage of temporal constraints as additional observability. We show that TC-CaRTS outperforms prior work in the robot tool segmentation task with improved convergence speed on test datasets from different domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源