论文标题

CMB温度三光谱从积聚原始黑洞

CMB temperature trispectrum from accreting primordial black holes

论文作者

Jensen, Trey W., Ali-Haïmoud, Yacine

论文摘要

众所周知,原始黑洞(PBHS)可以在宇宙微波背景(CMB)各向异性功率光谱上留下烙印,这是由于它们的积聚能量注入了重组等离子体。在这里,我们研究了通过积聚PBH的定性新的CMB可观察到的CMB:温度三角或连接的4点功能。这种非高斯签名是由于PBH增强亮度的强烈空间调节,因此通过PBHS和增生的Baryons之间的大规模超音速相对速度,电离扰动。我们首先得出了由积聚PBH引起的自由电子馏分不均匀性的可因素二次传递函数。然后,由于重组的一般修饰,我们计算出对CMB温度各向异性的扰动,并将结果应用于积聚PBHS。由于吸收PBH引起的电离扰动的空间波动,我们计算了对温度功率谱的新贡献,而不是过去的研究,而这仅是其同质部分。尽管这些贡献是正式可比的,但由于扰动温度场与标准CMB各向异性的相关性较差,我们发现新零件是亚域的。我们首次由于积聚PBH而计算温度三光谱。这种三光谱与局部型原始非高斯三角谱的相关性弱,因此,对后者的限制并不能导致竞争性界限。我们还预测,普朗克对通过积聚PBH提出的温度三光谱的敏感性。令人兴奋的是,我们发现它对$ \ sim 10^3 m _ {\ odot} $下的PBH比当前仅温度的功率频谱约束更敏感。这一结果激发了我们未来的工作,将这项研究扩展到了由不均匀的PBHS引起的温度和极化三光谱。

It is known that Primordial Black Holes (PBHs) can leave an imprint on Cosmic Microwave Background (CMB) anisotropy power spectra, due to their accretion-powered injection of energy into the recombining plasma. Here we study a qualitatively new CMB observable sourced by accreting PBHs: the temperature trispectrum or connected 4-point function. This non-Gaussian signature is due to the strong spatial modulation of the PBH accretion luminosity, thus ionization perturbations, by large-scale supersonic relative velocities between PBHs and the accreted baryons. We first derive a factorizable quadratic transfer function for free-electron fraction inhomogeneities induced by accreting PBHs. We then compute the perturbation to the CMB temperature anisotropy due to a general modification of recombination, and apply our results to accreting PBHs. We calculate a new contribution to the temperature power spectrum due to the spatial fluctuations of the ionization perturbation induced by accreting PBHs, going beyond past studies which only accounted for its homogeneous part. While these contributions are formally comparable, we find the new part to be subdominant, due to the poor correlation of the perturbed temperature field with the standard CMB anisotropy. For the first time, we compute the temperature trispectrum due to accreting PBHs. This trispectrum is weakly correlated with the local-type primordial non-Gaussianity trispectrum, hence constraints on the latter do not lead to competitive bounds on accreting PBHs. We also forecast Planck's sensitivity to the temperature trispectrum sourced by accreting PBHs. Excitingly, we find it to be more sensitive to PBHs under $\sim 10^3 M_{\odot}$ than current temperature-only power spectrum constraints. This result motivates our future work extending this study to temperature and polarization trispectra induced by inhomogeneously-accreting PBHs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源