论文标题

(否)USTCON的量子时空权衡

(No) Quantum space-time tradeoff for USTCON

论文作者

Apers, Simon, Jeffery, Stacey, Pass, Galina, Walter, Michael

论文摘要

无方向性的$ st $连接性对于其在网络问题中的应用以及其与Logspace复杂性的理论连接都很重要。从经典上讲,一长串的工作导致了任何$ s $的时间空间权衡$ t = \ tilde {o}(n^2/s)$,因此$ s =ω(\ log(n))$和$ s = o(n^2/m)$。令人惊讶的是,我们表明没有非平凡的时间空间权衡:有一种量子算法可以实现最佳时间$ \ tilde {o}(n)$和space $ o(\ log log(n))$。这可以改善先前的结果,这需要$ O(\ log(n))$空间和$ \ tilde {o}(n^{1.5})$时间,或$ \ tilde {o} {o}(n)$空间和时间。为了补充这一点,我们表明,当在相应的随机步行的频谱间隙上有下限时,存在非平凡的时间空间折衷。

Undirected $st$-connectivity is important both for its applications in network problems, and for its theoretical connections with logspace complexity. Classically, a long line of work led to a time-space tradeoff of $T=\tilde{O}(n^2/S)$ for any $S$ such that $S=Ω(\log (n))$ and $S=O(n^2/m)$. Surprisingly, we show that quantumly there is no nontrivial time-space tradeoff: there is a quantum algorithm that achieves both optimal time $\tilde{O}(n)$ and space $O(\log (n))$ simultaneously. This improves on previous results, which required either $O(\log (n))$ space and $\tilde{O}(n^{1.5})$ time, or $\tilde{O}(n)$ space and time. To complement this, we show that there is a nontrivial time-space tradeoff when given a lower bound on the spectral gap of a corresponding random walk.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源