论文标题

卷积神经网络激活拓扑拓扑的实验观察

Experimental Observations of the Topology of Convolutional Neural Network Activations

论文作者

Purvine, Emilie, Brown, Davis, Jefferson, Brett, Joslyn, Cliff, Praggastis, Brenda, Rathore, Archit, Shapiro, Madelyn, Wang, Bei, Zhou, Youjia

论文摘要

拓扑数据分析(TDA)是计算数学,桥接代数拓扑和数据科学的一个分支,可提供复杂结构的紧凑,噪声刺激表示。深度神经网络(DNNS)学习了数百万个与模型体系结构定义的转换相关的参数,从而导致了输入数据的高维,难以解释的内部表示。随着DNN在我们社会的多个部门中变得越来越无处不在,人们越来越认识到需要数学方法来帮助分析师,研究人员和实践者理解和解释这些模型的内部表示与最终分类之间的关系。在本文中,我们应用了TDA的尖端技术,目的是深入了解用于图像分类的卷积神经网络的解释性。我们使用两种常见的TDA方法来探索几种将隐藏层激活建模为高维点云的方法,并提供了实验证据,表明这些点云捕获了有关模型过程的宝贵结构信息。首先,我们证明,基于持久同源性的距离度量可以用于量化层之间有意义的差异,并且我们在现有的代表性相似性指标的神经网络可解释性的更广泛背景下讨论了这些距离。其次,我们证明了映射图可以提供有关这些模型如何在每一层组织层次类知识的语义洞察力。这些观察结果表明,TDA是一种有用的工具,可以帮助深度学习从业者解锁其模型的隐藏结构。

Topological data analysis (TDA) is a branch of computational mathematics, bridging algebraic topology and data science, that provides compact, noise-robust representations of complex structures. Deep neural networks (DNNs) learn millions of parameters associated with a series of transformations defined by the model architecture, resulting in high-dimensional, difficult-to-interpret internal representations of input data. As DNNs become more ubiquitous across multiple sectors of our society, there is increasing recognition that mathematical methods are needed to aid analysts, researchers, and practitioners in understanding and interpreting how these models' internal representations relate to the final classification. In this paper, we apply cutting edge techniques from TDA with the goal of gaining insight into the interpretability of convolutional neural networks used for image classification. We use two common TDA approaches to explore several methods for modeling hidden-layer activations as high-dimensional point clouds, and provide experimental evidence that these point clouds capture valuable structural information about the model's process. First, we demonstrate that a distance metric based on persistent homology can be used to quantify meaningful differences between layers, and we discuss these distances in the broader context of existing representational similarity metrics for neural network interpretability. Second, we show that a mapper graph can provide semantic insight into how these models organize hierarchical class knowledge at each layer. These observations demonstrate that TDA is a useful tool to help deep learning practitioners unlock the hidden structures of their models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源