论文标题
NIR-PROMPT:多任务广义神经信息检索培训框架
NIR-Prompt: A Multi-task Generalized Neural Information Retrieval Training Framework
论文作者
论文摘要
信息检索旨在找到满足语料库需求的信息。不同的需求对应于不同的IR任务,例如文件检索,开放域问题回答,基于检索的对话等,同时共享相同的模式以估计文本之间的关系。它表明良好的IR模型可以推广到不同的任务和域。但是,先前的研究表明,最新的神经信息检索(NIR)模型,例如,预训练的语言模型(PLM)很难概括。主要是因为端到端的微调范式使该模型过分强调了特定于任务的信号和域偏见,但失去了捕获通用基本信号的能力。为了解决这个问题,我们提出了一个新型的NIR培训框架,名为NIR-Prompt,以根据解耦信号捕获和组合的想法进行检索和重新阶段。 NIR-Prompt利用必需的匹配模块(EMM)捕获基本匹配信号,并通过匹配描述模块(MDM)获取任务的描述。该描述用作任务适应信息,以结合基本匹配信号以适应不同的任务。在内域多任务下,室外多任务和新任务适应设置下的实验表明,NIR-PROMPT可以改善NIR在NIR中的概括,而与基线相比,检索和重新脉络阶段都可以改善PLM的概括。
Information retrieval aims to find information that meets users' needs from the corpus. Different needs correspond to different IR tasks such as document retrieval, open-domain question answering, retrieval-based dialogue, etc., while they share the same schema to estimate the relationship between texts. It indicates that a good IR model can generalize to different tasks and domains. However, previous studies indicate that state-of-the-art neural information retrieval (NIR) models, e.g, pre-trained language models (PLMs) are hard to generalize. Mainly because the end-to-end fine-tuning paradigm makes the model overemphasize task-specific signals and domain biases but loses the ability to capture generalized essential signals. To address this problem, we propose a novel NIR training framework named NIR-Prompt for retrieval and reranking stages based on the idea of decoupling signal capturing and combination. NIR-Prompt exploits Essential Matching Module (EMM) to capture the essential matching signals and gets the description of tasks by Matching Description Module (MDM). The description is used as task-adaptation information to combine the essential matching signals to adapt to different tasks. Experiments under in-domain multi-task, out-of-domain multi-task, and new task adaptation settings show that NIR-Prompt can improve the generalization of PLMs in NIR for both retrieval and reranking stages compared with baselines.