论文标题
Xn4(x = Be,mg和pt)2D材料的晶格导热率和弹性模量使用机器学习间的电位
Lattice thermal conductivity and elastic modulus of XN4 (X=Be, Mg and Pt) 2D materials using machine learning interatomic potentials
论文作者
论文摘要
新合成的BEN4单层已经引入了一组新型的2D材料,称为富含氮的2D材料。在本研究中,研究了该组三个成员BEN4,MGN4和PTN4的各向异性机械和热性能。为此,基于机器学习的基于机器的间势(MLIP)是根据矩张量(MTP)方法开发的,并用于经典分子动力学(MD)模拟。通过非平衡分子动力学(NEMD)方法提取应力 - 应变曲线和热性能来计算机械性能。获得的结果表明,这些材料的各向异性弹性模量和晶格导热率。通常,在扶手椅方向上的弹性模量和导热率高于曲折方向。同样,对于BEN4和MGN4的每个温度,弹性各向异性几乎是恒定的,而对于PTN4,该参数通过增加温度而降低。这项研究的发现不仅是机器学习在MD模拟中应用的证据,而且还提供了有关这些新发现的2D纳米材料的基本各向异性机械和热性能的信息。
The newly synthesized BeN4 monolayer has introduced a novel group of 2D materials called nitrogen-rich 2D materials. In the present study, the anisotropic mechanical and thermal properties of three members of this group, BeN4, MgN4, and PtN4, are investigated. To this end, a machine learning-based interatomic potential (MLIP) is developed on the basis of the moment tensor potential (MTP) method and utilized in classical molecular dynamics (MD) simulation. Mechanical properties are calculated by extracting the stress-strain curve and thermal properties by non-equilibrium molecular dynamics (NEMD) method. Acquired results show the anisotropic elastic modulus and lattice thermal conductivity of these materials. Generally, elastic modulus and thermal conductivity in the armchair direction are higher than in the zigzag direction. Also, the elastic anisotropy is almost constant at every temperature for BeN4 and MgN4, while for PtN4, this parameter is decreased by increasing the temperature. The findings of this research are not only evidence of the application of machine learning in MD simulations, but also provide information on the basic anisotropic mechanical and thermal properties of these newly discovered 2D nanomaterials.