论文标题

实时顺序圆锥优化,用于多相火箭着陆指南

Real-Time Sequential Conic Optimization for Multi-Phase Rocket Landing Guidance

论文作者

Kamath, Abhinav G., Elango, Purnanand, Yu, Yue, Mceowen, Skye, Chari, Govind M., Carson III, John M., Açıkmeşe, Behçet

论文摘要

我们引入了一个多相火箭着陆指南框架,该框架可以处理非线性动力学,并且不要求任何其他混合组件或非convex约束来处理离散的时间事件/切换。为了实现这一目标,我们首先引入了顺序圆锥优化(SECO),这是一种用于解决非convex最佳控制问题的新范式,该问题完全没有矩阵因素化和反转。该框架结合了顺序凸编程(SCP)和一阶圆锥优化,可以实时解决统一的多相轨迹优化问题。该框架的新特征是:(1)时间间隔扩张,可以通过自由转移时间进行多相轨迹优化; (2)单形复合状态触发的约束,如果触发器和约束条件是凸面,则完全凸; (3)虚拟状态,这是一种在SCP方法中处理人为不可行的一种新方法,可保留约束集的形状; (4)使用比例综合投影梯度法(PIPG),一种高性能的一阶圆锥优化求解器,与惩罚性信任区域(PTR)SCP算法同时使用。我们通过使用非线性动力学和凸约约束来解决相关的多相火箭着陆指南问题,证明了SECO的疗效和实时能力,并观察到我们的求解器的速度比最先进的凸优化求解器快2.7倍。

We introduce a multi-phase rocket landing guidance framework that can handle nonlinear dynamics and does not mandate any additional mixed-integer or nonconvex constraints to handle discrete temporal events/switching. To achieve this, we first introduce sequential conic optimization (SeCO), a new paradigm for solving nonconvex optimal control problems that is entirely devoid of matrix factorizations and inversions. This framework combines sequential convex programming (SCP) and first-order conic optimization and can solve unified multi-phase trajectory optimization problems in real-time. The novel features of this framework are: (1) time-interval dilation, which enables multi-phase trajectory optimization with free-transition-time; (2) single-crossing compound state-triggered constraints, which are entirely convex if the trigger and constraint conditions are convex; (3) virtual state, which is a new approach to handling artificial infeasibility in SCP methods that preserves the shapes of the constraint sets; and, (4) the use of the proportional-integral projected gradient method (PIPG), a high-performance first-order conic optimization solver, in tandem with the penalized trust region (PTR) SCP algorithm. We demonstrate the efficacy and real-time capability of SeCO by solving a relevant multi-phase rocket landing guidance problem with nonlinear dynamics and convex constraints only, and observe that our solver is 2.7 times faster than a state-of-the-art convex optimization solver.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源