论文标题

ViewNet:有条件生成的无监督观点估计

ViewNet: Unsupervised Viewpoint Estimation from Conditional Generation

论文作者

Mariotti, Octave, Mac Aodha, Oisin, Bilen, Hakan

论文摘要

在没有监督的情况下,了解3D世界是计算机视觉的主要挑战,因为监督该领域任务的深层网络所需的注释很昂贵。在本文中,我们解决了无监督观点估计的问题。我们将其作为一项自我监督的学习任务,其中图像重建提供了预测相机观点所需的监督。具体来说,我们在训练时间(从未知的角度来看,再到自居民训练的训练)来利用一对相同对象的图像,通过将一个图像中的观点信息与另一个图像的外观信息相结合,从而自行训练。我们证明,使用透视空间变压器可以有效的观点学习,在合成数据上表现优于现有的无监督方法,并在具有挑战性的Pascal3D+数据集上获得竞争结果。

Understanding the 3D world without supervision is currently a major challenge in computer vision as the annotations required to supervise deep networks for tasks in this domain are expensive to obtain on a large scale. In this paper, we address the problem of unsupervised viewpoint estimation. We formulate this as a self-supervised learning task, where image reconstruction provides the supervision needed to predict the camera viewpoint. Specifically, we make use of pairs of images of the same object at training time, from unknown viewpoints, to self-supervise training by combining the viewpoint information from one image with the appearance information from the other. We demonstrate that using a perspective spatial transformer allows efficient viewpoint learning, outperforming existing unsupervised approaches on synthetic data, and obtains competitive results on the challenging PASCAL3D+ dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源